品牌中測
分類房屋檢測
數量100000000
種類可靠性鑒定
功能房屋檢測單位
鋼結構檢測鑒定的主要內容包括:對建筑材料、構件、連接與節點缺陷、結構系統、損傷狀況以及鋼結構安全性、適用性、耐久性及抗震性能鑒定等方面進屋鑒定,對有要求的鋼結構房屋結構安全檢測鑒定部門還應進行專項檢測,如:火災后鋼結構檢測鑒定,鋼結構疲勞度檢測鑒定,鋼結構動力檢測鑒定等。
建筑鋼結構檢測的技術
建筑鋼結構檢測的技術,主要包括力學性能、理化分析、無損探傷、結構性能等領域。其中鋼結構無損檢測目前應用廣,主要應用在以下幾方面:2.1焊接球節點鋼網架其整體結構由鋼管桿件與空心鋼球焊接組成的,球桿焊縫和空心球焊縫是二級質量焊縫,因此焊縫內部質量是保證網架安全主要因素,而焊縫質量檢測采用超聲檢測。2.2螺栓球節點鋼網架中的應用。螺栓球節點鋼網架由螺栓球、高強度螺栓和桿件三個分體構件組裝而成。螺栓球和高強度螺栓要進行表面質量檢測,一般采用水洗型著色滲透檢測;桿件焊縫要進行內部質量檢測,依據JGJ78采用超聲檢測。
2.3在焊接鋼結構工程中的應用。焊接H型門式鋼結構由鋼柱和鋼梁焊拼而成,是常見的一種焊接鋼結構。其中的全熔透焊縫內部質量要進行超聲檢測。抽樣數量和方法,一級焊縫檢測,二級焊縫按每條焊縫長度的20%且不小于200MM抽取。2.4在緊固件連接鋼結構工程中的應用。廠房的H型門式鋼架和高層建筑的鋼骨架,大部分是分體鋼柱和鋼梁用高強度螺栓連接組裝的,是典型的緊固件連接鋼結構工程。其中的鋼柱和鋼梁的全熔透焊縫內部質量要進行超聲檢測。
屋面光伏荷載報告檢測依據的規范:
(1) 《民用建筑可靠性標準》(G292-1999)
(2) 《工業建筑可靠性標準》(G144-2008)
(3) 《建筑抗震標準》(G023-2009)
(4) 《房屋完損等級評定標準》(城住字[84]第678)
(5) 《危險房屋標準》(JGJ125-99,2004年版)
(6) 《城市危險房屋管理規定》(令[2004]第129)
(8) 《建筑結構可靠度設計統一標準》(G068-2001)
(9) 《混凝土結構設計規范》(G010-2002)
(10)《砌體結構設計規范》(G003-2001)
(11)《建筑地基基礎設計規范》(G007-2002)
(12)《建筑抗震設計規范》(G011-2010)
(13)《建筑地震破壞等級劃分標準》(1990)建抗字第377
(14)《建筑工程抗震設防分類標準》(G223-2008)
(15)《建筑結構荷載規范》(G009-2001,2006年版)
(16)《建筑變形測量規程》(JGJ/T8-2007)
(17)《建筑結構檢測技術標準》(GB/750344-2004)
(18)《鉆芯法檢測混凝土強度技術規程》(CE03:2007)
(19)《回彈儀評定燒結普通磚強度等級的方法》(JC/T796-1999)
屋面光伏荷載報告—有關知識:
屋頂面積直接決定光伏發電項目的容量,是基礎的元素,屋面上是否存在附屬物,如風樓、風機、附房、女兒墻等,設計時需要避開陰影影響。屋面朝向決定著光伏支架、組件、串列、匯流箱的布置原則,比如東西走向的屋面,背陰面的方陣是否需要設置傾角,組件串聯時陰陽兩面盡量避免互連,匯流箱及逆變器直流輸入輸入盡量為同一屋面朝向的陣列。屋面材質基本分為彩鋼瓦、陶瓷瓦、鋼混等,其中彩鋼瓦分為直立鎖邊型、咬口型(角馳式,呈菱形)型、卡扣型(暗扣式)型、固定件連接(明釘式,梯形凸起)型。前兩種需要轉接件,后兩種需要打孔固定;陶瓷瓦屋面既可以使用轉接件,也可以不與屋面固定,利用自重和屋面坡度附著其上;鋼混結構屋面一般需要制作支架基礎,基礎與屋面可以生根也可以不生根,關鍵考慮屋面防水、抗風載能力、屋面設計荷載等因素。屋面的設計使用壽命決定光伏電站的使用壽命。屋面荷載屋面荷載大體分為荷載和可變荷載。荷載也稱恒荷載,指的是結構自重及灰塵荷載等,光伏電站安裝在屋面后,需要運營25年,其自重歸屬于恒荷載,因此,在項目前期考察時,需要著重查看建筑設計說明中恒荷載的設計值,并落實除屋面自重外,是否額外增加其他荷載,如管道、吊置設備、屋面附屬物等,并落實恒荷載是否有余量能夠安裝光伏電站。可變荷載是考慮極限狀況下暫時施加于屋面的荷載,分為風荷載、雪荷載、地震荷載、活荷載等,是不可以占用的。情況下,活荷載可以作為分擔光伏電站荷載的選項,但不可以占用過多,需要具體分析。

屋面光伏荷載證明報告——目前彩鋼屋面多為坡屋面,常見的坡度為10%和5%。屋面板為壓型鋼板或壓型夾芯板,下部為檁條,檁條搭設在門式剛架等主要支撐結構上。
在國內,此種類型的屋面安裝光伏電站實例較多。對于此種屋面,光伏組件可沿屋面坡度平行鋪設,也可以設計成一定傾角的方式布置。上部支架可通過不同的連接件、緊固件與屋面承重結構連接。常見的彩鋼板屋面的主要形式有:直立鎖邊型、角馳型、卡口型、明釘型等。彩鋼屋面光伏發電項目屬于對已有建筑物彩鋼屋面的改造項目,因而建筑物的屋面形式、建筑物的結構形式、光伏陣列的布置形式及光伏組件本身的形式,以上條件的多樣性決定了屋面光伏支架的形式多種多樣。屋面的形式及建筑物的結構形式對光伏支架的工程造價影響較大。一般來說,屋面的防水等級越高,屋面防水層不外露,屋面的活荷載越大及建筑物整體結構較好、承載能力較強的屋面,光伏支架的工程造價越低,反之,工程造價越高。
彩鋼瓦屋面電站設計方案中有幾個重要的注意事項:
一、明確光伏組件的形式及鋪設方式,清楚原有建筑物的屋面形式。
二、清楚原有建筑物的結構形式并對主要結構受力構件進行核算。
三、根據原有建筑物的屋面形式、結構形式、光伏陣列的布置形式、光伏組件本身的形式、結構核算結果及可能的施工措施等多項條件,給出各種可行的支架布置方案,確定優的布置方式。
四、屋面光伏電站項目有其施工上的特殊性,綜合考慮現場施工條件,選擇合適的施工工藝,并給出施工中的注意事項、施工保護劑安全施工措施等。
屋面光伏荷載證明報告——本公司承接以下全國業務:
1.出租房屋租賃前安全(辦租賃合同用)
2.房屋改變用途安全及改變使用功能
3.工業廠房安全
4.房屋質量的安全
5.司法仲裁委托
6.建筑物改造加固
7.拆改房屋安全
8.房屋地基承載力.抗震
9.房屋裝飾裝修安全
10.施工周邊房屋安全
11.建筑物的年限
12.災后建筑物的
13.近代建筑
14.“五無"工程建筑物的檢測
15.房屋完損等級評定和房屋安全事故
16.危房鑒定及各種應急
17.地鐵共振引發的房屋損壞
18.房屋加固增層改.修繕擴建
19.建筑結構可靠性
20.煙囪安全檢測 煙囪質量檢測
21.文化.體育..賓館.餐飲.商鋪.展廳等公共場所的開業前.轉業前和資質年審前的房屋安全。

屋面光伏荷載報告——根據工程實際,屋面常規可分為混凝土屋面、瓦屋面和彩鋼板屋面。
根據屋面的不同,組件支架與屋面的固定可采用不同的方式。
(1)混凝土屋面。
混凝土屋面常規荷載余量比較大,為獲取大發電量,常規采用支架做出一定傾角,太陽能組件固定在支架上。支架構成如圖1。
采用傾角安裝的太陽能組件,除考慮組件和地區的雪荷載外,風對組件的抗拔力是設計需要考慮的因數。以往的設計中,是采用防水螺栓將支架固定在屋面上。但此做破壞屋面防水,而且需要將原屋面破壞后再修復,成本較高。目前流行的設計是在支架底部設置混凝土砌塊,增加自重以抵御風吸力。
(2)瓦屋面。
國內住宅,特別是多層住宅屋面多為瓦屋面。在此屋面布置太陽能板,無法采用支架形式,且瓦屋面考慮排水,自身已有坡度。所以在瓦屋面上,太陽能組件一般沿屋面坡度平鋪。瓦片無法固定組件,組件需要采用固定件固定在屋面梁內。
(3)鋼屋面。
鋼屋面因自身承載力較小,布置太陽能組件首先要復核原屋面荷載是否能滿足設計要求。因為荷載問題,太陽能系統的輕量化就是在鋼屋面上布置太陽能組件的關鍵點。組件自身質量已固定,可調整范圍不大。組件的固定為減少質量,一般不采用支架,而采用成品的夾具。
屋面光伏荷載報告——結構可靠度分析:
1.影響結構可靠性的因素
影響結構可靠性原因在實際的操作中有很多種,其中主要的原因有兩個方面,一方面是結構本身對不同的作用效果的抵抗情況,另一方面是結構對自身所承受到的不同壓力來自于外界的作用。施加在結構上的不同的作用會在支座處生成反壓力,而且同時會導致結構產生內力、變形、傾覆和滑移。
2.結構的可靠度分析
結構的可靠度指的是什么呢,簡單地說就是一個結構所能夠承受的時間問題,打個比方說,一個工程一個結構的可靠時間是有規定的,而且這個規定是在特定的范圍之內以及特定的條件之下的,并且可以完成的所預定的功能的一個概率,這樣來看呢,結構的可靠度是結構可靠性的一個概率度量。也就是說結構的可靠度是對結構的可靠性有一種規定好的概述。在不同的隨機原因的影響下,結構完成的預先規定的功能的能力是不能確定的。所以結構的可靠度就只能用概率來表示了,因為結構失去作用是一個非常小的事件,失去作用的概率對結構的可靠度的把握也就顯得更加的明顯,所以一般在學術上或者學習上大部分的情況都會用概率來表示結構的可靠度。
3.荷載值確定工作中存在的不足
當下我國建筑結構設計荷載值的確定工作展開的過程中,存在的不足主要體現在如下幾個方面。首先,設計人員自身的化素養較為欠缺,知識的不夠完善使得具體工作在展開時往往不夠細致,荷載值的確定也缺乏準確度。其次,對于荷載取值工作的不夠完善,缺乏一套健全的監督體系,這也是使得許多工作展開不夠細致的原因。此外,現階段我國用于建筑結構荷載設計的方式仍然較為單一,這也是使得一些工作落實的不夠到位的一個原因。

屋面光伏荷載報告——框架結構屋頂光伏荷載安全檢測的主要內容:
1. 對該建筑軸線尺寸和層高進行校核;
2. 采用鉆芯法檢測框架柱、框架梁板的混凝土強度。
3. 采用鋼筋探測儀檢測框架柱、框架梁板的鋼筋配置情況(框架梁、框架柱主筋 直徑、數量和樓板底筋直徑、間距)和鋼筋保護層厚度,同時適量選取框架梁、框架柱、樓板鑿槽驗證鋼筋直徑。
4. 檢測混凝土構件的碳化深度。
5. 檢測混凝土中氯離子含量。
6. 采用鋼卷尺檢測框架柱、框架梁的截面尺寸及樓板的厚度。
7. 檢測框架柱、框架梁板鋼筋外露銹蝕情況,采用游標卡尺檢測鋼筋銹蝕后的有效直徑。
8. 檢測建筑物的外觀質量、現狀和使用情況。
9. 查看結構布置是否合理、構件傳力是否直接等。
10. 檢測建筑物的梁、板、柱等構件是否有裂縫,裂縫是否已造成對結構的危害等。
11. 檢測圍護結構變形、裂縫、滲漏情況。
12. 檢測建筑物是否有傾斜,檢測基礎是否有不均勻下沉。
13. 根據檢測結果,結合由建筑科學研究院開發的多建筑結構分析程序PKPM系列軟件對建筑結構安全性進行驗算分析,確定該建筑主體結構前的安全狀況,對建筑的后續使用提出基于結構安全考慮的相關建議。
14. 對建筑的日常使用、日常維護及定期檢查觀測提出建議。
屋面光伏荷載報告——鋼結構廠房屋頂光伏荷載安全檢測主要內容:
鋼結構緊固件力學性能檢測螺栓連接副扭矩系數、緊固軸力、拉伸(屈服強度、抗拉強度)、硬度等性能、螺栓連接板抗滑移系數檢測。
1 鋼構件連接質量
2 鋼結構涂層厚度
3 鋼構件銹蝕與損傷
4 結構和構件尺寸
5 結構和構件變形
6 工程施工質量評價
7 結構安全性與可靠性評價 。
http://www.whqzyc.com